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Abstract: 
 

We address points raised by Anderson et al. (2020), which commented on our prior 
work. After correcting unambiguous data mistakes, our revised estimates suggest 
that municipal water disinfection (filtration) explains 38% of the total mortality rate 
decline in our sample cities and years – a result not very different from our 43% 
original estimate.  However, effects on infant mortality rates are smaller than in our 
original analysis. Much of the difference between ACR’s analyses and ours is due 
to the coding of partial intervention years and to differences in population 
denominators, for which ideal data are difficult to find.   

 

 

 

We thank Kim Singer Babiarz for assistance in preparing this comment as well as Mark Anderson, Kerwin Charles, 
and Daniel Rees along with Seema Jayachandran and anonymous referees for valuable comments and suggestions.  
A more detailed version of this comment is available at: https://ngmiller.people.stanford.edu/role-public-health-
improvements-health-advances-20th-century-united-states.  
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1. Introduction 

In this comment, we address points raised by Mark Anderson, Kerwin Charles, and 

Daniel Rees’s paper entitled “Re-Examining the Contribution of Public Health Efforts to the 

Decline in Urban Mortality” (“ACR”).  ACR is, in part, an examination of our 2005 

Demography article entitled “The Role of Public Health Improvements in Health Advances: The 

20th Century United States” (“CM”).  During the summer of 2018, we shared data and code from 

CM with ACR. They replicated our original results.  In conducting new analyses of both milk 

purification and water/sanitation technologies in American cities in the early 20th century, ACR 

also identified differences between our original analysis and their new analysis.  ACR 

communicated with us about these issues in a helpful and collegial manner.  We very much 

appreciate their constructive feedback.  In light of their results, we have evaluated the issues 

further.  We report our findings here.   

The issues raised by ACR generally fall into three categories: (1) transcription errors, (2) 

assignment of differing clean water intervention dates (including coding of partial intervention 

years), and (3) the population denominators used in constructing mortality rates.  Several of the 

transcription errors identified in ACR are in fact mistakes in the original paper, which we are 

grateful to have these identified.1 Otherwise, a large share of the discrepancy in the estimates 

between CM and ACR is due to the coding of partial intervention years and to the construction 

of population denominators for mortality rates when such denominators are not known for 

certain.  

 
1 The dataset available online includes updates to correct these errors: 
https://ngmiller.people.stanford.edu/sites/g/files/sbiybj4811/f/demography2005_0002_final.dta.  Throughout this 
comment, we use the corrected CM total mortality rates and infant mortality rates estimates as the basis for 
comparison rather than those originally reported in CM (2005). 
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After carefully considering the points raised by ACR and correcting the unambiguous 

mistakes in our original data, our revised estimates suggest that municipal water disinfection 

(filtration) explains 38% of the total mortality decline in our sample cities and study years – a 

result not dramatically different from the estimated 43% in the original paper. However, effects 

on infant mortality appear more sensitive to these adjustments. Based on these results and others 

in the literature, we nonetheless continue to believe that these technologies have been important 

for historical urban mortality decline. 

 

2. The Findings of Cutler and Miller (2005) 

 In our earlier paper, we estimated panel data models examining the impact of water 

filtration and chlorination on mortality.  Our primary outcomes were the total mortality rate in 

the city as well as infant morality rate and mortality rates by cause.  Our central result was that 

43% of the reduction in total mortality between 1900 and 1936 was a result of clean water 

interventions. 

That original analysis had one computational error, pointed out to us by Alsan and Goldin 

and discussed further in an unpublished note (Cutler and Miller, 2016): we used the change in 

log points in the numerator and divided it by the percent change in deaths in the denominator. 

Correcting this error by using percent changes for both leads to a corrected clean water share of 

improved mortality of 41%.2  We use this estimate in examining the effect of the changes 

proposed by ACR.  

 

3. Summary of Transcription Errors  

 
2 An erratum note is available online at https://ngmiller.people.stanford.edu/sites/g/files/sbiybj4811/f/erratum.pdf.  
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ACR identified several data transcription and coding errors made in CM. First, ACR 

identified a coding error made in calculating lagged mortality rates for the city of Memphis, 

which did not report any mortality data in the year 1916. Although Memphis is correctly coded 

as missing for 1916, lagged rates for the 5 subsequent years were erroneously coded as zeros 

rather than missing. 

Second, for years 1910-1917, CM digitized race-specific mortality rates for the 9 sample 

cities for which the Bureau of the Census reported data disaggregated by race. These race-

specific mortality rates were then weighted using the population share in each race category to 

obtain total mortality rates.  Although the rates calculated in this way do not exactly match the 

overall rates reported directly for total mortality, the two are close.3  For the purpose of this re-

assessment, we re-entered the contemporaneously reported total mortality rates reported for the 

population as a whole using the annual Mortality Statistics volumes for years 1910-1917.  

Third, ACR identified several errors in the infant mortality rates used in CM. Some of 

these are miscellaneous transcription errors (for example, there were 856 infant deaths in 

Milwaukee in 1926, but the number of infant deaths was erroneously recorded as 865; these 

errors are reported in detail in ACR Appendix Table 8). However, they do not substantively 

affect the results. Additionally, ACR identified a systematic error in the CM infant mortality 

rates for 9 cities in years 1910-1917.  As was done for all-cause mortality, CM use age-specific 

death counts by race for these city-years and then weight race-specific infant mortality using 

corresponding race-specific population shares.  However, these weights were erroneously 

 
3 For example, in 1914, the Mortality Statistics volume reports that the city of Cincinnati had an all-cause mortality 
rate of 1521.2 per 100,000 among white residents (93.7% of the population) and a mortality rate of 2959.6 per 
100,000 among non-whites (6.3% of the population). CM calculated the total mortality rate among all residents as 
(1521.2	 × 0.937106) + (2959.6	 × 0.062894) = 1611.667.  Aggregate total mortality rates reported in the same 
Mortality Statistics volume were 1599.0 for Cincinnati in 1914.  
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 4 

applied to infant death counts prior to calculating infant mortality rates, which were not 

ultimately calculated. Instead, the weighting approach should have been applied after calculating 

infant mortality rates for these city-years. This is a mistake that we are grateful to have 

identified. 

After correcting these errors, our estimate of the effect of water filtration and chlorination 

on total mortality rates falls from -0.16 (p-value 0.03) to -0.13 (p-value = 0.03) (Table 1, 

Columns 1-2), with each estimate falling within the 95% confidence interval of the other.  

However, for infant mortality rates, the corrected estimate falls meaningfully, from -0.43 (p-

value 0.005) to -0.13 (p-value = 0.02) (Table 1, Columns 3-4).4 Hereafter, we use the corrected 

total mortality rate and infant mortality rate estimates as the basis for comparison rather than 

those originally reported in CM (2005).  

 

4. Assignment of Clean Water Intervention Dates 

ACR identify a number of differences in clean water intervention dates between their 

analysis and those used by CM. Reviewing the data more closely, differences in dates generally 

appear to be the result of two factors: differences in dates reported in various historical sources 

and differences in coding when an intervention was introduced in a phased manner over multiple 

years. All told, out of 13 total cities, ACR use water filtration dates for 4 cities and water 

chlorination dates for 7 cities that are different than the CM dates.5 

 
4 We note that given the composition and major causes of infant mortality during this era (concentrated in the 
neonatal period), along with the practice of exclusive breastfeeding, it is unclear that one would necessarily expect 
infants to be the demographic subgroup most sensitive to clean water interventions (Thomasson and Treber, 2004). 
For example, Knutsson (2018) finds that clean water technology reduced Stockholm’s total mortality rates by about 
30%, but do not find statistically significant effects on infant mortality. There are also new questions raised about 
the accuracy of population denominators in US historical vital statistics (see Eriksson et al. (2017)).  
5 When allowing for fractional coding for years in which interventions were partially available, CM and ACR clean 
water technology variables differ in value for all 13 cities.  
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 5 

On differences in intervention dates used by ACR and CM, different historical sources 

give different dates for clean water interventions.  When writing the original CM paper, we 

addressed this inconsistency by making phone calls to individual waterworks to verify 

intervention dates through each waterworks’ own records.  Reaching some confidence on 

intervention dates through discussions with waterworks employees, in part, ultimately motivated 

our choice of dates (and cities) to incorporate. ACR use historical articles providing intervention 

dates. Table 2, Columns 1 and 2 show the effect of using the alternative dates put forward by 

ACR on our results. The filtration coefficient falls from -0.13 (p-value = 0.027) in the CM 

analysis to -0.09 (p-value = 0.036) using ACR intervention dates.6   

Philadelphia provides an illustrative example of the differences due to coding when an 

intervention was introduced in a phased manner over multiple years.  Philadelphia adopted 

filtration technology incrementally between 1902 and 1909: filtration systems were installed in 

Lower Roxborough in 1902, Kittanning in 1905, and Lancaster in 1906. However, the largest 

facility, Torresdale, which provided the majority of Philadelphia’s drinking water (and was the 

largest facility in the world at the time), was not completed until 1909.  ACR use 1906 as the 

date of filtration, while CM use 1908. Upon reconsideration of Philadelphia’s history, we would 

actually be inclined to think that 1909 is the most appropriate date to use in this case. We do not 

see a case for 1906 being the best choice of year.7  

 
6 Results obtained using ACR intervention dates throughout this comment differ slightly from those reported in 
Tables 14 and 15 of an earlier working paper version (see ACR (2020)) because we recode lagged intervention 
variables to correspond to the ACR intervention dates. 
7 When adjusting Philadelphia's water filtration date to 1909, point estimates for total mortality increase to -0.14 (p-
value = 0.027) using CM (2005) dates for all other cities, -0.11 (p-value = 0.032) using ACR (2020) dates for all 
other cities, and -0.16 (p-value = 0.006) when using ACR (2020) dates recoded as indicators. When adjusting 
Philadelphia's date to 1909, point estimates for infant mortality are to -0.13 (p-value = 0.05) using CM (2005) dates 
for all other cities, -0.05 (p-value = 0.475) using ACR (2020) dates for all other cities, and -0.14 (p-value = 0.012) 
when using ACR (2020) dates recoded as indicators. 
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 6 

Finally, CM code water disinfection and sanitation interventions using indicator variables 

(taking a value of 1 if an intervention was active at any point during a given year), while ACR 

use in some instances a partial/fractional intervention coding for a subset of intervention years 

(in monthly increments, or twelfths).8 Though seemingly minor, this coding difference matters 

for the results. Table 2, Column 3 shows that simply recoding partial years of an intervention to 

full years (but otherwise using ACR dates) increases the ACR filtration estimate from -0.09 (p-

value = 0.036) to -0.15 (p-value = 0.010), a value greater in magnitude than our original 

estimate.  In principle, the idea of using partial intervention year coding is a good one. However, 

the ideal coding should be based on the share of clean water provided to people weighted by how 

likely they were to die or water-born disease. Without this information, we hesitate to use partial 

year data. 

Ultimately, because some degree of judgment is required, we take an empirical approach 

to assessing the sensitivity of the CM and ACR results to intervention dates.  Specifically, we re-

estimate our original specification using all 8,192 possible combinations of CM and ACR 

intervention dates.9 We also repeat this exercise changing ACR’s coding of fractional 

intervention years to indicator variables for all cities.  Focusing first on total mortality rates, 

Figure 1, Panel A shows that no combination of dates using either partial intervention year 

coding or exclusive indicator variable coding produces an estimate outside the confidence 

interval using our original dates.   

 
8 The first year of water filtration interventions is coded as partial/fractional years for eight cities. The first year of 
water chlorination is coded as partial/fractional years for four cities. Finally, three cities have partial/fractional 
coding for more than one intervention year (two cities with two years each of fractional coding and one city with 
three years; in two cases, these values decrease over time before taking a value of 1).  
9 When allowing for partial intervention years, CM and ACR intervention variables differ in at least some years for 
all 13 cities, implying a total of 213 = 8,192 possible unique combinations of city-level intervention variables. When 
recoding ACR dates to indictors (not allowing for partial years), intervention variables used CM and ACR differ for 
only 9 cities, leading to a total of 29 = 512 possible unique combinations of city-level dates.  

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3312834

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



 7 

To further explore sensitivity, we also adopt a ‘leave-one-out’ strategy, starting with CM 

dates, ACR dates, and ACR dates recoded as indicators, and we omit one city at a time from the 

analysis. Figure 2, Panel A shows that the results are generally robust to excluding each city and 

that no estimates are outside of the confidence intervals of the original CM or ACR estimates 

(respectively).   

Unlike for total mortality rates, estimates for infant mortality rates appear more sensitive 

to the choice of dates, and in particular, sensitive to the coding of partial intervention years.  

Table 2, Columns 4-6 show this, using dates and coding choices from both CM and ACR, 

yielding -0.13 (p-value = 0.03) using CM dates, -0.05 (p-value = 0.45) using ACR dates, and -

0.15 (p-value = 0.003) using ACR dates but with partial intervention years recoded as indicators.   

Analogous to our sensitivity analysis for total mortality rates, Figure 1, Panel B shows 

distributions of estimates for infant mortality rates using all possible combination of CM and 

ACR dates (both as originally coded and recoding ACR partial intervention year variables as 

indicators).  No combination of dates falls outside the confidence interval using our original 

dates, including when recoding partial intervention years to indicator variables.    

Finally, Figure 2, Panel B shows the leave-one-out analysis, leaving each city out of the 

analysis one at a time using each set of intervention dates. As with total mortality rate estimates, 

the results are generally robust to excluding each city, and that no estimates are outside of the 

confidence intervals of full-sample estimates using CM rates or ACR rates (respectively).10   

 

5. The Role of Population Denominators 

 
10 This is true for the revised CM infant mortality rate estimates (after correcting the unambiguous errors described 
in Section 3), but not for the original CM (2005) infant mortality rate estimates. 
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 8 

Although CM and ACR collect mortality counts and rates from the same sources (US 

Census Bureau, 1909-1940), ACR identify slight differences in total mortality rates for years 

1901-1909 and more substantial differences for years 1910-1917 (there are no differences for 

years after 1917).11  After reviewing these differences, they are due to differences in methods for 

estimating population denominators. CM use mortality rate information as published 

contemporaneously by the U.S. Bureau of the Census. For years prior to 1917, vital registration 

systems reported estimated mortality rates, dividing death counts reported by localities by 

population denominator estimates. Such denominators are only known with near-certainty in 

population census years. ACR recalculate mortality rates for intervening years using mortality 

counts and population denominators interpolated between census years. 

For total (all-cause) mortality, the U.S. Bureau of the Census reported both mortality 

counts and mortality rates in its annual Mortality Statistics volumes for years 1901-1917 (US 

Census Bureau, 1909-1940). 12   To calculate mortality rates, the Bureau estimated population in 

intercensal years using two methods. The 1909 volume of Mortality Statistics reported mortality 

rate estimates for 1901-1909 by assuming that annual population increase was 1/10th of the total 

increase between 1900 and the preliminary results of the 1910 census. For volumes covering 

1910-1917, the Bureau estimated population denominators assuming that the annual population 

increase was 1/10th of the increase in population between the previous two decennial censuses 

(1900 and 1910) (US Census Bureau, 1916). After 1917, the Bureau no longer reported mortality 

rates, but instead reported only death counts. CM uses rates as reported by Mortality Statistics 

for all years for which these rates were published. For all other years (years after 1917), CM 

 
11 Cause-specific mortality rates do not differ between the two sources.  
12 For infant mortality rates, unlike for total mortality, the Bureau of the Census only reports infant mortality counts 
in all study years.  To calculate infant mortality rates, both CM and ACR transcribe death counts, which are then 
divided by age-specific infant population projections interpolated between decennial census years.  
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 9 

divides the number of deaths by population estimates interpolated between census year 

population counts.  Alternatively, ACR calculate mortality rates for all years using mortality 

counts and interpolated population estimates, even when the Bureau of the Census reports rates 

directly.   

While these differences in population denominators seem arcane, they have considerable 

impact on the results. Table 3 Columns 1-2 show that changing the method of calculating 

population denominators cuts the estimated effect of water filtration on total mortality rates from 

-0.13 (p-value 0.03) to -0.08 (p-value 0.014). However, the 95% confidence interval around the 

CM estimates in Column 1 includes the estimate with different population denominators, and the 

confidence interval around the estimate with different population denominators in Column 2 

includes the CM (2005) estimate as well. Figure 3 considers this issue further, reproducing 

Figure 1, Panel A using ACR population denominators. Doing so shifts the resulting 

distributions to the right of those in Figure 1, Panel A.  

It is debatable which approach to constructing a time series of total mortality rates is 

preferable.  The approach used by ACR has the appeal of using the same method consistently for 

all study years.  However, it also discards information provided by the Bureau of the Census 

produced using the Bureau’s method of population projection. The approach used by CM uses as 

much information reported directly by the Bureau of the Census as possible, but as a result uses 

two different methods for population denominators, before and after 1918.  Neither approach 

incorporates the presumably nonlinear (over time) actual underlying populations due to 

disruptions such as the 1918 Spanish flu pandemic or World War I – or even due to the clean 

water interventions themselves.  
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 10 

What would the correct, “gold-standard” approach to constructing population 

denominators be?  Ideally, one would build city-specific life tables to generate intercensal 

population projections (Wunsch et al., 2002).  Building these life tables would require data (or 

estimates) on four types of population flows: births, deaths, immigration, and emigration.  With 

annual measures of each, the process would be a relatively straightforward population 

accounting exercise.13  Annual measures of births and deaths are generally available,14 but to the 

best of our knowledge, annual information on immigration and emigration are not.  Nonetheless, 

methods for estimating immigration and emigration may be possible (and cohort sizes in 

intercensal years could be adjusted accordingly). 

 

6. Conclusion  

We are grateful to ACR for the careful re-analysis of our earlier paper and deeply 

appreciate both the constructive nature of our exchanges with them and the identification of 

several mistakes in our original paper.  Many of the other discrepancies identified, including 

those that substantively and quantitatively matter most for the results, are ones which we believe 

require judgment.  We have done our best to evaluate these issues, especially the coding of city 

intervention dates and the construction of population denominators.  

Overall, correcting the unambiguous mistakes in our earlier paper yields the finding that 

municipal water disinfection explains 38% of the total mortality rate decline in our sample cities 

and study years – a result not materially different from the 43% estimated in the original paper.  

However, effects on infant mortality rates appear more sensitive to these adjustments and 

 
13 In cases where birth and death counts were unavailable, one could use age-specific fertility and mortality rates in 
combination with census year population counts to estimate intercensal populations. Migration data would be 
required to adjust at-risk population shares in each age category.  
14 Birth counts by city are available for all years beginning in 1915.  
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 11 

markedly smaller than in our original analysis – although we believe the evidence still supports 

significant, and quantitatively meaningful, effects of clean water on infant mortality as well. 

Otherwise, a large share of the discrepancy between our analysis and ACR’s is, somewhat 

surprisingly, due to the coding of partial intervention years and to the construction of population 

denominators for mortality rates. The population is not known for certain, and city populations 

were changing rapidly in this time period.   

More generally, based on the findings of other papers studying municipal water and 

sanitation interventions in similar historical contexts – some of which were similarly inspired by 

our paper – we believe that these technologies have been quite important for historical urban 

mortality decline (Alsan and Goldin, 2018, Anderson et al., 2019, Anderson et al., 2020, Cain 

and Rotella, 2001, Ferrie and Troesken, 2008, Ketzenbaum and Rosenthal, 2014, Knutsson, 

2018, Knutsson, 2020, Ogasawara et al., 2015) and appear to be an important determinant of 

health in contemporary lower-income cities as well (Ashrof et al., 2017, Bhalotra et al., 2018, 

Galiani et al., 2005).  
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Figure 1: Total and Infant Mortality and Possible Combinations of Intervention Dates  

Panel A: Total Mortality Rates, CM (Corrected)    Panel B: Infant Mortality Rate, Corrected 

  

Figure 1 assesses the sensitivity of the CM (2005) total mortality rate and infant mortality rate results to alternative intervention dates. Total mortality rates are 
contemporaneously reported, as described in Cutler and Miller (2005), with data entry errors corrected. Infant mortality rates used are corrected as described in 
Anderson, Charles, and Rees (2020). We re-estimate Equation (1) using all possible unique pair-wise combinations of city-level intervention dates used in CM 
(2005) and ACR (2020).  When allowing for fractional year intervention coding, CM and ACR intervention variables differ in at least some years for all 13 cities, 
implying a total of 213 = 8,192 possible unique pair-wise combinations of city-level intervention variables. When recoding ACR dates to indictors (not allowing 
for partial years), intervention variables used CM and ACR differ for only 9 cities, leading to a total of 29 = 512 possible unique combinations of city-level dates.  
Panel A shows the results of this analysis for the total mortality rate (using the corrected CM (2005) approach to population denominators); dashed line indicates 
point estimates and 95% confidence intervals produced using CM intervention dates. Panel B shows the results for infant mortality rate using ACR (2020) rates 
which correct data errors in CM (2005); dashed line shows the point estimates and 95% confidence intervals produced using CM intervention dates. Figures 
show the distribution of each set of resulting point estimates. All specifications include sewage treatment dummy variables, lagged mortality, year and city 
dummy variables, city trends, and demographic characteristics (population share by gender, race, birthplace, and age).  
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Figure 2: Leave-One-Out Analysis 

Panel A: Total Mortality Rates, CM (Corrected)     Panel B: Infant Mortality Rate, Corrected  

    

Figure 2 assesses the sensitivity of the CM (2005) results for total mortality rate and infant mortality rate results to alternative intervention dates for each city 
using a ‘leave-one-out’ approach. Using corrected CM (2005) total mortality rates (Panel A) and corrected infant mortality rates as reported in ACR (2020) 
(Panel B), we estimate Equation 1 starting with each alternative set of intervention dates (CM dates, ACR dates, and ACR dates recoded as indicators), and 
omitting one city at a time from the analysis. Panels A and B show the resulting point estimates and corresponding 95% confidence intervals. All specifications 
include sewage treatment dummy variables, lagged mortality, year and city dummy variables, city trends, and demographic characteristics (population share by 
gender, race, birthplace, and age). Standard errors are clustered at the city level.   
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Figure 3: Distribution of Coefficients Using ACR Mortality Rates and All Possible Combinations of Intervention Dates 

 

Figure 3 assesses the sensitivity of ACR (2020) total mortality rate results to alternative intervention dates. We re-estimate Equation (1) using all possible unique 
pair-wise combinations of city-level intervention dates used in CM (2005) and ACR (2020).  When allowing for fractional year intervention coding, CM and 
ACR intervention variables differ in at least some years for all 13 cities, implying a total of 213 = 8,192 possible unique pair-wise combinations of city-level 
intervention variables. When recoding ACR dates to indictors (not allowing for partial years), intervention variables used CM and ACR differ for only 9 cities, 
leading to a total of 29 = 512 possible unique combinations of city-level dates. Figures show the distribution of each set of resulting point estimates. All 
specifications include sewage treatment dummy variables, lagged mortality, year and city dummy variables, city trends, and demographic characteristics 
(population share by gender, race, birthplace, and age). Solid vertical line shows results using ACR mortality rates and CM intervention dates, and dashed line 
shows results using ACR mortality rates and ACR intervention dates.  
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Table 1: Total and Infant Mortality Rate Estimates with and without Transcription Error 
Corrections  

 
 
  

Outcome:
Mortality Rate Source: Original Corrected Original Corrected

(1) (2) (4) (5)

Filtration -0.16** -0.13** -0.43*** -0.13**
(0.064) (0.053) (0.138) (0.059)

Chlorination -0.02 -0.01 -0.08 0.02
(0.034) (0.024) (0.104) (0.043)

Filtration * Chlorination 0.05 0.03 0.06 0.07
(0.031) (0.026) (0.083) (0.048)

Filtration Within 5 Years -0.09 -0.07 -0.18* -0.03
(0.066) (0.048) (0.090) (0.028)

Chlorination Within 5 Years 0.02 0.01 -0.05 0.03
(0.022) (0.014) (0.101) (0.028)

Observations 415 410 415 410
R-squared 0.957 0.963 0.828 0.977
F-test 3.085 2.883 5.433 2.827
Prob > F 0.0681 0.0798 0.0136 0.0835

Total Mortality Rate Infant Mortality Rate

Table shows the results of Equation 1 as presented in Cutler and Miller (2005) and after correcting 
data transcription and coding errors. Columns 1 and 2 show results for total mortality rate and 
Columns 3 and 4 show the results for infant mortality rates. Intervention dates are as originally 
specified in CM (2005). All specifications include sewage treatment dummy variables, lagged 
mortality, year and city dummy variables, city trends, and demographic characteristics (population 
share by gender, race, birthplace, and age).  Standard errors are clustered at the city level. *** 
p<0.01, ** p<0.05, * p<0.10.
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Table 2: Sensitivity of Total and Infant Mortality Rate Estimates to Alternative 
Intervention Dates 

 
 
 
 
 

 

  

Mortality Rate Source
Intervention Date Source: CM ACR ACR CM ACR ACR

Fractional Coding as Indicators Fractional Coding as Indicators

(1) (2) (3) (4) (5) (6)

Filtration -0.13** -0.09** -0.15*** -0.13** -0.05 -0.15***
(0.053) (0.040) (0.050) (0.059) (0.055) (0.039)

Chlorination -0.01 -0.02 -0.01 0.02 0.03 -0.03
(0.024) (0.025) (0.026) (0.043) (0.039) (0.039)

Filtration * Chlorination 0.03 0.03 0.02 0.07 -0.00 -0.01
(0.026) (0.027) (0.025) (0.048) (0.043) (0.041)

Filtration Within 5 Years -0.07 -0.04 -0.08* -0.03 0.01 -0.04
(0.048) (0.032) (0.043) (0.028) (0.026) (0.023)

Chlorination Within 5 Years 0.01 -0.01 -0.01 0.03 -0.05* -0.07*
(0.014) (0.014) (0.018) (0.028) (0.028) (0.034)

Observations 410 410 410 410 410 410
R-squared 0.963 0.962 0.964 0.977 0.978 0.978
F-test 2.883 1.965 3.151 2.827 0.589 6.457
Prob > F 0.0798 0.173 0.0647 0.0835 0.634 0.00753

Total Mortality Rate, CM (Corrected) Infant Mortality Rate, Corrected

Table shows sensitivity to the use of alternative water filtration dates in Equation 1 for total mortality and infant mortality rates. Total 
mortality rates are contemporaneously reported, as described in Cutler and Miller (2005), with data entry errors corrected. Infant mortality 
rates used are corrected as described in Anderson, Charles, and Rees (2020). Columns 1-3 show results for total mortality, with Column 1 
showing results using intervention dates described in CM (2005), Column 2 fixing all dates at those shown in ACR (2020), and Column 3 
shows results using dates in ACR (2020) recoded as indicator variables. Columns 4-6 show results for infant mortality rates with Column 
4 showing results fixing all intervention dates to those described in CM (2005), Column 5 showing results fixing all dates to those 
proposed in ACR (2020) as originally coded, and Column 6 shows results fixing all intervention dates to those proposed in ACR (2020), 
recoded as indicators.  All specifications include sewage treatment dummy variables, lagged mortality, year and city dummy variables, 
city trends, and demographic characteristics (population share by gender, race, birthplace, and age). Standard errors are clustered at the 
city level. *** p<0.01, ** p<0.05, * p<0.10.
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Table 3: Sensitivity of Total Mortality Rate Estimates  
to Choice of Population Denominator  

 
 

All Cause Mortality Rate Source: CM (Corrected) ACR
Intervention Date Source: CM CM

(1) (2)

Filtration -0.13** -0.08**
(0.053) (0.028)

Chlorination -0.01 -0.04
(0.024) (0.026)

Filtration * Chlorination 0.03 0.05**
(0.026) (0.024)

Filtration Within 5 Years -0.07 -0.02
(0.048) (0.013)

Chlorination Within 5 Years 0.01 0.02
(0.014) (0.011)

Observations 410 410
R-squared 0.963 0.970
F-test 2.883 2.843
Prob > F 0.0798 0.0824
Table shows the results of alternate approaches to population 
denominators used to calculate total mortality rates, fixing 
intervention dates at those used in Cutler and Miller (2005). Column 1 
shows results using contemporaneously reported mortality rates from 
CM, with data entry errors corrected, and Column 2 shows results 
using total mortality rates proposed in ACR (2020). All specifications 
include sewage treatment dummy variables, lagged mortality, year and 
city dummy variables, city trends, and demographic characteristics 
(population share by gender, race, birthplace, and age). Standard errors 
are clustered at the city level. *** p<0.01, ** p<0.05, * p<0.10.
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